Respuesta :
[tex]\text{Hey there!}[/tex]
[tex]\text{Distribute the value of 7 in each of your terms}[/tex]
[tex]\text{(2x}^3+\text{3y}^2)(7)[/tex]
[tex]\text{2x}^3\times7=\text{14x}^3[/tex]
[tex]\text{3y}^2\times7=\text{21y}^2[/tex]
[tex]\text{We cannot combine like terms because they AREN'T any in this equation}[/tex]
[tex]\boxed{\boxed{\bf{Answer:14x^3+21y^2}}}\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{LoveYourselfFirst:)}[/tex]
Answer:
[tex]a=2x^3[/tex] and [tex]b=3y^2[/tex]
Step-by-step explanation:
The given binomial expression is: [tex](2x^3+3y^2)^7[/tex]
A standard binomial expression is like [tex](a+b)^n[/tex]
Comparing the given expression with the standard binomial expression.....
[tex](a\ \ +\ \ b)^n \Longleftrightarrow (2x^3\ +\ 3y^2)^7\\ \\ So,\ \ a=2x^3\\ \\ and\ \ b=3y^2[/tex]