Respuesta :
Answer:
[tex]x=\frac{1+ \sqrt{47}i}{8}[/tex] and [tex]x=\frac{1 -\sqrt{47}i}{8}[/tex]
Step-by-step explanation:
Given quadratic equation is [tex]4x^2-x+3=0[/tex].
Compare with [tex]ax^2+bx+c=0[/tex], we get:
a=4, b=-1, c=3
Now plug these values into quadratic formula :
[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-\left(-1\right) \pm \sqrt{\left(-1\right)^2-4\left(4\right)\left(3\right)}}{2\left(4\right)}[/tex]
[tex]x=\frac{1 \pm \sqrt{1-48}}{8}[/tex]
[tex]x=\frac{1 \pm \sqrt{-47}}{8}[/tex]
[tex]x=\frac{1 \pm \sqrt{47}i}{8}[/tex]
Hence final answer is
[tex]x=\frac{1+ \sqrt{47}i}{8}[/tex] and [tex]x=\frac{1 -\sqrt{47}i}{8}[/tex]
Answer:
Solution of given quadratic equation,
x = [1 + 6.86i]/8 or x = [1 - 6.86i]/8
Step-by-step explanation:
Points to remember
Solution of a quadratic equation ax² + bx + c = 0
x = [-b ± √(b² - 4ac)]/2a
It is given a quadratic equation, 4x²-x+3=0
To find the solution using quadratic formula
Here a = 4, b = -1 and c = 3
We have,
x = [-b ± √(b² - 4ac)]/2a
x = [--1 ± √((-1)² - 4*4*3)]/2*4
= [1 ± √(1 - 48)]/8
= [1 ± √(-47)]/8
= [1 ± 6.86i]/8
x = [1 + 6.86i]/8 or
x = [1 - 6.86i]/8