Respuesta :

Answer:

The relative maximum value is [tex]\frac{2}{3}[/tex]

Step-by-step explanation:

The given function is

[tex]g(x)=\frac{2}{x^2+3}[/tex]

We differentiate to obtain;

[tex]g'(x)=-\frac{4x}{(x^2+3)^2}[/tex]

At turning points [tex]g'(x)=-\frac{4x}{(x^2+3)^2}=0[/tex]

[tex]\implies x=0[/tex]

[tex]g''(x)=\frac{16x^2}{(x^2+3)^3}- \frac{4}{(x^2+3)^2}[/tex]

We apply the second derivative test to obtain:

[tex]g''(0)=\frac{16(0)^2}{((0)^2+3)^3}- \frac{4}{((0)^2+3)^2}=-\frac{4}{9}[/tex]

Since the second derivative is negative, there is a relative maximum at x=0.

We substitute x=0 into the original function to obtain the relative maximum value.

[tex]g(0)=\frac{2}{(0)^2+3}=\frac{2}{3}[/tex]