Respuesta :
Answer:
[tex]\sqrt{\frac{x}{4}}[/tex] and [tex]-\sqrt{\frac{x}{4}}[/tex]
Step-by-step explanation:
The function is given as [tex]f(x)=4x^2[/tex]
to find inverse, we follow the steps shown below:
1. write "y" in place of "f(x)"
2. interchange "x" and "y"
3. solve for the new "y"
4. replace y with f^-1(x)
Let's do this:
[tex]f(x)=4x^2\\y=4x^2\\x=4y^2\\y^2=\frac{x}{4}\\y=+-\sqrt{\frac{x}{4}}[/tex]
These 2 are the inverse functions.
For this case we must find the inverse of the following function:
[tex]f (x) = 4x ^ 2[/tex]
We follow the steps below:
Replace f (x) with y:
[tex]y = 4x ^ 2[/tex]
We exchange variables;
[tex]x = 4y ^ 2[/tex]
We solve for y:
[tex]4y ^ 2 = x[/tex]
We divide between 4 on both sides of the equation:
[tex]y^ 2 = \frac {x} {4}[/tex]
We apply square root to both sides to eliminate the exponent:
[tex]y = \pm \sqrt {\frac {x} {4}}[/tex]
We substitute y for [tex]f ^ {- 1} (x)[/tex]:
[tex]f ^ {- 1} (x) =\pm \sqrt {\frac {x} {4}}[/tex]
Answer:
[tex]f^{-1}(x)=\pm\frac{\sqrt{x}}{2}[/tex]