50 POINTS!!! Which of the following expressions are equivalent to 2/x^8-y^8

Answer:
[tex]\large \boxed{\mathrm{\bold{A.} } \ \frac{2}{x^4-y^4} \cdot \frac{1}{x^4 +y^4}} \\\\\\ \large \boxed{\mathrm{\bold{B.} } \ \frac{2}{(x^4)^2 -(y^4)^2 } }[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{2}{x^8-y^8 }[/tex]
Factor the denominator.
[tex]\displaystyle \frac{2}{(x^4)^2 -(y^4)^2 }[/tex]
[tex]\displaystyle \frac{2}{(x^4-y^4)^2 }[/tex]
[tex]\displaystyle \frac{2}{(x^4-y^4)(x^4 +y^4) }[/tex]
Split the fraction into two fractions.
[tex]\displaystyle \frac{2}{x^4-y^4} \cdot \frac{1}{x^4 +y^4}[/tex]