Respuesta :

sin=√17/7

or sin=sqrt(17)/7

Answer:

[tex]\frac{\sqrt{17} }{7}[/tex]

Step-by-step explanation:

Given

cosΘ = [tex]\frac{4\sqrt{2} }{7}[/tex] = [tex]\frac{adjacent}{hypotenuse}[/tex]

Then the hypotenuse of the right triangle is 7 and the adjacent side is 4[tex]\sqrt{2}[/tex]

To find the opposite side use Pythagoras' identity

The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is

opp² + (4[tex]\sqrt{2}[/tex] )² = 7²

opp² + 32 = 49 ( subtract 32 from both sides )

opp² = 17 ( take the square root of both sides )

opp = [tex]\sqrt{17}[/tex]

Hence

sinΘ = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{\sqrt{17} }{7}[/tex]