Respuesta :

Answer:

h = 10 m

Step-by-step explanation:

We are given the following formula of the area of a trapezoid:

[tex]A=\frac{1}{2} (b+c)h[/tex]

where [tex]h[/tex] is the height of the trapezoid and [tex]b[/tex] and [tex]c[/tex] are its bases.

Re-arranging the given formula to solve for h:

[tex]A=\frac{1}{2} (b+c)h[/tex]

[tex]2A=(b+c)h[/tex]

[tex]h=\frac{2A}{(b+c)}[/tex]

Finding the height of the trapezoid given the bases 20 m, 7 m and area 135m^2.

[tex]h=\frac{2 \times 135}{(7+20)}[/tex]

h = 10 m

ANSWER

h=10m

EXPLANATION

The given formula is

[tex]A = \frac{1}{2} (b + c)h[/tex]

We multiply through by 2 to get,

[tex]2A =(b + c)h[/tex]We divide both sides by (b+c) to get,

[tex] \frac{2A}{b + c}=h[/tex]

Or

[tex]h=\frac{2A}{b + c} [/tex]

[tex]h=\frac{2 \times 135}{20 + 7} [/tex]

We simplify to get,

[tex]h=\frac{270}{27} [/tex]

Therefore

[tex]h = 10[/tex]

Now if b=20, c=7 and A=135, then,