Which choice is equivalent to the fraction below? Hint: Rationalize the denominator and simplify.
Please show work.

Answer:
[tex]\boxed{\text{D. }3\sqrt{2}}[/tex]
Step-by-step explanation:
Multiply numerator and denominator by √2
[tex]\dfrac{6}{\sqrt{2}} = \dfrac{6}{\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}}\\\\= \dfrac{6\sqrt{2}}{2}\\\\= \boxed{3\sqrt{2}}[/tex]
Answer: D. [tex]3\sqrt{2}[/tex]
Step-by-step explanation:
The given fraction : [tex]\dfrac{6}{\sqrt{2}}[/tex]
Here, the denominator is in radical form which makes it not an simplified form.
So , we rationalize it by multiplying [tex]\sqrt{2}[/tex] to the numerator and the denominator , we get
[tex]\dfrac{6}{\sqrt{2}}\times\dfrac{\sqrt{2}}{\sqrt{2}=\dfrac{6\sqrt{2}}{2}}\\\\=\dfrac{2\times3\times\sqrt{2}}{2}\\\\=3\sqrt{2}[/tex] [Cancel 2 from the numerator and the denominator.]
Hence, the choice is equivalent to the given fraction = [tex]3\sqrt{2}[/tex]
Hence, the correct option is D. [tex]3\sqrt{2}[/tex]