Respuesta :

Answer:

The vertex form of a quadratic equation is:

[tex]f(x) = (x-3)^2+4[/tex]

the minimum value of f(x) is [tex]y=4[/tex]

Step-by-step explanation:

Given a quadratic equation of the form [tex]f (x) = ax ^ 2 + bx + c[/tex] then the x coordinate of the vertex is

[tex]x=-\frac{b}{2a}[/tex]

So for  [tex]f(x)=x^2-6x+13[/tex]

[tex]a=1\\b=-6\\c=13\\[/tex]

Therefore

The x coordinate of the vertex is:

[tex]x=-\frac{(-6)}{2(1)}[/tex]

[tex]x=3[/tex]

The y coordinate of the vertex is:

[tex]f(3)=(3)^2-6(3)+13[/tex]

[tex]y=f(3)=4[/tex]

By definition the minimum value of the quadratic function is the same as the coordinate of y of its vertex

So the minimum value  is [tex]y=4[/tex]

The vertex form of a quadratic equation is:

[tex]f(x) = a(x-h)^2+k[/tex]

Where

a is the main coefficient. [tex]a=1[/tex]

h is the x coordinate of the vertex. [tex]h=3[/tex]

k is the y coordinate of the vertex. [tex]k=4[/tex]

So the vertex form of a quadratic equation is:

[tex]f(x) = (x-3)^2+4[/tex]

Answer:

a.  [tex]f(x)=(x-3)^2+4[/tex]

b. The minimum value is 4

Step-by-step explanation:

The given function is: [tex]f(x)=x^2-6x+13[/tex]

We add and subtract half the square of the coefficient of x.

[tex]f(x)=x^2-6x+3^2-3^2+13[/tex]

This becomes: [tex]f(x)=x^2-6x+9-9+13[/tex]

The first three terms form a perfect square trinomial.

[tex]f(x)=(x-3)^2+4[/tex]

The function is now in the form:  [tex]f(x)=a(x-h)^2+k[/tex], where V(h,k) is the vertex.

Therefore the vertex is (3,4).

The minimum value  is the y-value of the vertex, which is 4.