Respuesta :

Answer: -4

[tex](f + g) (2) = -4[/tex]

Step-by-step explanation:

We have the functions

[tex]F(x) =-3x^2-2[/tex]   And  [tex]g(x)=4x+2[/tex]

We want to find

[tex](f + g) (x)[/tex]

Then

[tex](f+g)(x) = f(x) + g(x)\\\\(f+g)(x) = -3x^2-2 + 4x+2\\\\(f+g)(x)= -3x^2 +4x[/tex]

finally we find

[tex](f + g) (2)[/tex]

[tex](f + g) (2) = -3(2)^2 + 4(2)\\\\(f + g) (2) = -3*4 + 8\\\\(f + g) (2) = -12+ 8\\\\(f + g) (2) = -4[/tex]

Answer:  The required value is 20.

Step-by-step explanation:  We are given the following two functions :

[tex]f(x)=3x^2-2,~~~~~~~g(x)=4x+2.[/tex]

We are to find the value of (f + g)(2).

We know that, for any two functions p(x) and q(x), we have

[tex](p+q)(x)=p(x)+q(x).[/tex]

So, we have

[tex](f+g)(x)\\\\=f(x)+g(x)\\\\=3x^2-2+4x+2\\\\=3x^2+4x.[/tex]

Therefore, at x = 2, we get

[tex](f+g)(2)=3\times2^2+4\times2=12+8=20.[/tex]

Thus, the required value is 20.