Respuesta :
Answer: [tex]A = 108.80\ units^2[/tex]
Step-by-step explanation:
The surface area of right cone is calculated by the following formula
[tex]A = \pi r *\sqrt{r^2 +h^2}+\pi r^2[/tex]
Where r is the radius of the cone and h is the height
In this case we know that the diameter d of the base is:
[tex]d=2r[/tex]
So the radius is:
[tex]r=\frac{d}{2}\\\\r=\frac{6}{2}\\\\r=3\ units[/tex]
and
[tex]h=8\ units[/tex]
So the area is:
[tex]A = \pi*3 *\sqrt{3^2 +8^2}+\pi(3)^2[/tex]
[tex]A = 108.80\ units^2[/tex]
Answer:
[tex]SA=108.8 units^2[/tex]
Step-by-step explanation:
The surface area of a right cone is given by
[tex]S.A=\pi r^2+\pi rl[/tex]
The relation between the slant height l, the radius r, and the height h, is
[tex]l^2=r^2+h^2[/tex]
[tex]l^2=3^2+8^2[/tex]
[tex]l^2=9+64[/tex]
[tex]l^2=73[/tex]
[tex]l=\sqrt{73}[/tex]
[tex]S.A=\pi \times 3^2+\pi \times3\times\sqrt{73}[/tex]
[tex]S.A=\pi \times 3^2+\pi \times3\times\sqrt{73}[/tex]
[tex]SA=108.8 units^2[/tex]