Respuesta :

Answer: [tex]A = 108.80\ units^2[/tex]

Step-by-step explanation:

The surface  area of right cone is calculated by the following formula

[tex]A = \pi r *\sqrt{r^2 +h^2}+\pi r^2[/tex]

Where r is the radius of the cone and h is the height

In this case we know that the diameter d of the base is:

[tex]d=2r[/tex]

So the radius is:

[tex]r=\frac{d}{2}\\\\r=\frac{6}{2}\\\\r=3\ units[/tex]

and

[tex]h=8\ units[/tex]

So the area is:

[tex]A = \pi*3 *\sqrt{3^2 +8^2}+\pi(3)^2[/tex]

[tex]A = 108.80\ units^2[/tex]

Answer:

[tex]SA=108.8 units^2[/tex]

Step-by-step explanation:

The surface area of a right cone is given by

[tex]S.A=\pi r^2+\pi rl[/tex]

The relation between the slant height l, the radius r, and the height h, is

[tex]l^2=r^2+h^2[/tex]

[tex]l^2=3^2+8^2[/tex]

[tex]l^2=9+64[/tex]

[tex]l^2=73[/tex]

[tex]l=\sqrt{73}[/tex]

[tex]S.A=\pi \times 3^2+\pi \times3\times\sqrt{73}[/tex]

[tex]S.A=\pi \times 3^2+\pi \times3\times\sqrt{73}[/tex]

[tex]SA=108.8 units^2[/tex]