Respuesta :

Answer:

[tex]-\sqrt{x + 4}[/tex]

Step-by-step explanation:

1- It's known that shifting(called translation), reflection and rotation operations on th function would let us manipulate it as we like, and taking the square root function

[tex]\sqrt{x}[/tex]

would let us to start graphing from the desired point in the xy-plane by using shifting operations on it.

2- Taking the minus of the square root function

[tex]-\sqrt{x}[/tex]

would reflect the function over x-axis so the function would be decreasing from 0 to infinity.

3- Then, adding 4 to x in the square root

[tex]-\sqrt{x+4}[/tex]

would make the domain of the function to start from [tex] x+4 > 0[/tex]or [tex]x > - 4[/tex] (by adding 4 to both sides).

4- Finally, the function of the domain (-4, [tex]\infty[/tex]) is

[tex]-\sqrt{x+4}[/tex].

I hope that I helped, and i'm sorry for any English mistakes(I'm not English speaker) .