Respuesta :

Answer:

The factors are: (3a+2b +ab-6)(3a+2b -ab+6)

Step-by-step explanation:

[tex](a^2-4)(9-b^2)+24ab[/tex]

We need to solve the above expression using factorization.

Multiplying (a^2-4)(9-b^2)

9(a^2-4)-b^2(a^2-4) + 24ab

9a^2 -36 -a^2b^2+4b^2 + 24ab

Rearranging:

9a^2 + 4b^2 +24ab -36 -a^2b^2

We try to make perfect square of the form a^2+2ab-b^2

We have 24ab that can be written as 12ab + 12ab

Now, we can arrange the above equation:

9a^2 +12ab+ 4b^2 -(a^2b^2-12ab +36)

(3a)^2 +2(3a)(2b) + (2b)^2 -((ab)^2 -2(ab)(6)+(6)^2)

The perfect square will be:

(3a+2b)^2 - (ab-6)^2

Now We know a^2 - b^2 = (a+b)(a-b)

Here a = 3a+2b , b=ab-6

So,

(3a+2b +(ab-6))(3a+2b - (ab-6))

(3a+2b +ab-6)(3a+2b -ab+6)

So, the factors are: (3a+2b +ab-6)(3a+2b -ab+6)