Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given

f(x) = x² - p(x + 1) - c

     = x² - px - p - c ← in standard form

with a = 1, b = - p and c = - p - c

Given that α and β are the zeros of f(x), then

α + β = - [tex]\frac{b}{a}[/tex] and αβ = [tex]\frac{c}{a}[/tex], thus

α + β = - [tex]\frac{-p}{1}[/tex] = p , and

αβ = [tex]\frac{-p-c}1}[/tex] = - p - c

-----------------------------------------------------------

(α + 1)(β + 1) ← expand factors

= αβ +α + β + 1 ← substitute values from above

= - p - c + p + 1

= - c + 1 = 1 - c ← as required