Consider the equation y = -2x + 5. Create a table of five ordered pairs that satisfy the equation. What is the y-intercept of the equation? What is the x-intercept of the equation?


a.
y-intercept (5, 0); x-intercept (-5/2,0)

b.
y-intercept (0, 5); x-intercept (0,5/2)

c.
y-intercept (5, 0); x-intercept (5/2,0)

d.
y-intercept (0, 5); x-intercept (5/2,0)

Respuesta :

Answer with step-by-step explanation:

Ordered pairs that satisfy the given equation:

x  0  1  2  3  4

y  5  3  1  -1  -3

To find the x-intercept, we will substitute y = 0 and solve for x to get:

[tex]0 = -2x + 5[/tex]

[tex] -2x = -5[/tex]

[tex]x = 5/2[/tex]

x-intercept = (5/2, 0)

To find the y-intercept, we will substitute x = 0 and solve for x to get:

[tex]y = -2(0) + 5[/tex]

[tex]y = 5[/tex]

y-intercept = (0, 5)

Answer: option d.

Step-by-step explanation:

To create a table of five ordered pairs that satisfy the equation, you need to give values to the variable "x" and substitute these into the function to find the corresponding value of "y":

For [tex]x=-2[/tex]

[tex]y = -2(-2) + 5=9[/tex]

For [tex]x=-1[/tex]

[tex]y = -2(-1) + 5=7[/tex]

For [tex]x=0[/tex]

[tex]y = -2(0) + 5=5[/tex]

For [tex]x=1[/tex]

[tex]y = -2(1) + 5=3[/tex]

For [tex]x=2[/tex]

[tex]y = -2(2) + 5=1[/tex]

Then, you can make the table:

x   -2  -1  0  1  2

y   9  7  5  3  1

To find the  x-intercept, substitute [tex]y=0[/tex] into the function and solve for "x". Then:

[tex]0 = -2x + 5\\\\x=\frac{-5}{-2}\\\\x=\frac{5}2}[/tex]

This is: ([tex]\frac{5}{2}[/tex], 0)

To find the  y-intercept, substitute [tex]x=0[/tex] into the function and solve for "y". Then:

[tex]y= -2(0) + 5\\\\y=5[/tex]

This is: (0,5)