Respuesta :

Answer:

[tex]x=21,y=25[/tex]

Step-by-step explanation:

The given equation is:

[tex]\frac{(5-3i)(x+iy)}{(4-5i)}=(2+i)^2-(3-4i)^2[/tex]

Apply difference of two squares on the RHS.

[tex]\frac{(5-3i)(x+iy)}{(4-5i)}=[(2+i)+(3-4i)][(2+i)-(3-4i)[/tex]

Simplify the RHS.

[tex]\frac{(5-3i)(x+iy)}{(4-5i)}=(5-3i)(5i-1)[/tex]

Expand the RHS

[tex]\frac{(5-3i)(x+iy)}{(4-5i)}=(10+28i)[/tex]

Cross multiply to get:

[tex](5-3i)(x+iy)=(10+28i)(4-5i)[/tex]

Expand both sides

[tex](5x+3y)+(5y-3x)i=180+62i[/tex]

Comparing the complex parts, we obtain:

[tex]5y-3x=62...(1)[/tex]

Comparing the real number parts we get;

[tex]5x+3y=180...(2)[/tex]

Solving equations (1) and (2) simultaneously; we get:

[tex]x=21,y=25[/tex]