Respuesta :

Answer:

Option b. 12

Step-by-step explanation:

This exercise asks us to find the derivative of a function using the definition of a derivative.

Our function is [tex]f(x) = x^{3}[/tex]. Therefore:

[tex]f(2+h) = (2+h)^{3}[/tex]

[tex]f(2) = (2)^{3} = 8[/tex]

Then:

[tex]\lim_{h \to \0} \frac{f(2+h)-f(2)}{h}=\lim_{h \to \0} \frac{(2+h)^{3}-8}{h}[/tex]

Expanding:

[tex]\lim_{h \to \0} \frac{(2+h)^{3}-8}{h} =\lim_{h \to \0} \frac{8+ h^{3} +6h(2+h) -8}{h} =\lim_{h \to \0} \frac{h^{3} +6h(2+h)}{h}[/tex]

[tex]\lim_{h \to \0} \frac{h^{3}+ 6h(2+h)}{h} =\lim_{h \to \0} h^{2} + 6(2+h) [/tex]

Now, if x=0:

[tex]\lim_{h \to \0} \frac{f(2+h)-f(2)}{h} = (0)^{2} +6(2+0) = 12[/tex]