Respuesta :

Answer:

Hence final answer is [tex]x<-8[/tex] or [tex]x>\frac{1}{5}[/tex]

correct choice is B because both ends are open circles.

Step-by-step explanation:

Given inequality is [tex]\frac{x+8}{5x-1}>0[/tex]

Setting both numerator and denominator =0 gives:

x+8=0,  5x-1=0

or x=-8, 5x=1

or x=-8, x=1/5

Using these critical points, we can divide number line into three sets:

[tex](-\infty,-8)[/tex], [tex]\left(-8,\frac{1}{5}\right)[/tex] and [tex](\frac{1}{5},\infty)[/tex]

We pick one number from each interval and plug into original inequality to see if that number satisfies the inequality or not.

Test for [tex](-\infty,-8)[/tex].

Clearly x=-9 belongs to [tex](-\infty,-8)[/tex] interval then plug x=-9 into [tex]\frac{x+8}{5x-1}>0[/tex]

[tex]\frac{-9+8}{5(-9)-1}>0[/tex]

[tex]\frac{-1}{-46}>0[/tex]

[tex]\frac{1}{46}>0[/tex]

Which is TRUE.

Hence [tex](-\infty,-8)[/tex] belongs to the answer.

Similarly testing other intervals, we get that only [tex](-\infty,-8)[/tex] and [tex](\frac{1}{5},\infty)[/tex] satisfies the original inequality.

Hence final answer is [tex]x<-8[/tex] or [tex]x>\frac{1}{5}[/tex]

correct choice is B because both ends are open circles.

Answer:

[tex]x \:<\:-8[/tex] or  [tex]x \:>\:\frac{1}{5}[/tex].

Step-by-step explanation:

The given inequality is [tex]\frac{x+8}{5x-1} \:>\:0[/tex]

For this statement to be true, then we must have the following cases:

Case 1

[tex]x+8 \:<\:0\:and\:5x-1\:<\:0[/tex]

[tex]x \:<\:-8\:and\:x\:<\:\frac{1}{5}[/tex]

The intersection of these two inequalities is [tex]x \:<\:-8[/tex].

The solution to this first case is  [tex]x \:<\:-8[/tex].

Case 2

[tex]x+8 \:>\:0\:and\:5x-1\:>\:0[/tex]

[tex]x \:>\:-8\:and\:x\:>\:\frac{1}{5}[/tex]

The intersection of these two inequalities is [tex]x \:>\:\frac{1}{5}[/tex].

The solution to this second case is  [tex]x \:>\:\frac{1}{5}[/tex].

Therefore the solution to the given inequality is

[tex]x \:<\:-8[/tex] or  [tex]x \:>\:\frac{1}{5}[/tex].

The second option is correct