Answer: The correct options are
(B) the value of b is [tex]\dfrac{1}{36}.[/tex]
(C) As the value of the exponent decreases, each previous value is divided by 6.
Step-by-step explanation: We are given that Tori examined the pattern of exponents in the following table :
[tex]\textup{power of 6}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\textup{value}\\\\6^3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~216\\\\6^2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~36\\\\6^1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~6\\\\6^0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1\\\\6^{-1}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a\\\\6^{-2}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~b[/tex]
We are to select the true statements based on the above pattern.
We will be using the following property of exponents :
[tex]x^{-y}=\dfrac{1}{x^y}.[/tex]
Therefore, we get
[tex]a=6^{-1}=\dfrac{1}{6^1}=\dfrac{1}{6}.[/tex]
and
[tex]b=6^{-2}=\dfrac{1}{6^2}=\dfrac{1}{36}.[/tex]
Also, the value of the exponent is decreasing and we see that
[tex]\dfrac{216}{36}=\dfrac{36}{6}=\dfrac{6}{1}=\dfrac{1}{\frac{1}{6}}=\dfrac{\frac{1}{6}}{\frac{1}{36}}=6.[/tex]
So, each previous value is divided by 6.
Thus, the correct options are
(B) the value of b is [tex]\dfrac{1}{36}.[/tex]
(C) As the value of the exponent decreases, each previous value is divided by 6.