Respuesta :

Answer:

Part 1) The vertex is the point (0.50,2.50)

part 2) [tex]y=-58[/tex]

Step-by-step explanation:

we have

[tex]y=-2x^{2} +2x+2[/tex]

Part 1) Convert into vertex form

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]y-2=-2x^{2} +2x[/tex]

Factor the leading coefficient

[tex]y-2=-2(x^{2} -x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]y-2-0.50=-2(x^{2} -x+0.25)[/tex]

[tex]y-2.50=-2(x^{2} -x+0.25)[/tex]

[tex]y-2.50=-2(x-0.50)^{2}[/tex]

[tex]y=-2(x-0.50)^{2}+2.50[/tex] -----> equation in vertex form

The vertex is the point (0.50,2.50)

Part 2) Find the value of y for x=6

substitute the value of x in the equation

[tex]y=-2(6)^{2} +2(6)+2[/tex]

[tex]y=-72 +12+2[/tex]

[tex]y=-58[/tex]