contestada

A planet of mass m 6.75 x 1024 kg is orbiting in a circular path a star of mass M 2.75 x 1029 kg. The radius of the orbit is R 8.05 x107 km. What is the orbital period (in Earth days) of the planet Tplanet?

Respuesta :

Answer:

The orbital period of the planet is 387.62 days.

Explanation:

Given that,

Mass of planet[tex]m =6.75\times10^{24}\ kg[/tex]

Mass of star [tex]m'=2.75\times10^{29}\ kg[/tex]

Radius of the orbit[tex]r =8.05\times10^{7}\ km[/tex]

Using centripetal and gravitational force

The centripetal force is given by

[tex]F = \dfrac{mv^2}{r}[/tex]

[tex]F=m\omega^2r[/tex]

We know that,

[tex]\omega=\dfrac{2\pi}{T}[/tex]

[tex]F=m(\dfrac{2\pi}{T})^2r[/tex]....(I)

The gravitational force is given by

[tex]F = \dfrac{mm'G}{r^2}[/tex]....(II)

From equation (I) and (II)

[tex]m(\dfrac{2\pi}{T})^2r=\dfrac{mm'G}{r^2}[/tex]

Where, m = mass of planet

m' = mass of star

G = gravitational constant

r = radius of the orbit

T = time period

Put the value into the formula

[tex]T^2=\dfrac{4\pi^2R^3}{m'G}[/tex]

[tex]T^2=\dfrac{4\times(3.14)^2\times(8.05\times10^{7})^3}{2.75\times10^{29}\times6.67\times10^{-11}}[/tex]

[tex]T=2\times3.14\times\sqrt{\dfrac{(8.05\times10^{10})^3}{2.75\times10^{29}\times6.67\times10^{-11}}}[/tex]

[tex]T =3.34\times10^{7}\ s[/tex]

[tex]T= 387.62\days[/tex]

Hence, The orbital period of the planet is 387.62 days.

The planet's orbital period is about 388 days

[tex]\texttt{ }[/tex]

Further explanation

Centripetal Acceleration can be formulated as follows:

[tex]\large {\boxed {a = \frac{ v^2 } { R } }[/tex]

a = Centripetal Acceleration ( m/s² )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

[tex]\texttt{ }[/tex]

Centripetal Force can be formulated as follows:

[tex]\large {\boxed {F = m \frac{ v^2 } { R } }[/tex]

F = Centripetal Force ( m/s² )

m = mass of Particle ( kg )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

mass of the planet = m = 6.75 × 10²⁴ kg

mass of the star = M = 2.75 × 10²⁹ kg

radius of the orbit = R = 8.05 × 10⁷ km = 8.05 × 10¹⁰ m

Unknown:

Orbital Period of planet = T = ?

Solution:

Firstly , we will use this following formula to find the orbital period:

[tex]F = ma[/tex]

[tex]G \frac{ Mm}{R^2}=m \omega^2 R[/tex]

[tex]G M = \omega^2 R^3[/tex]

[tex]\frac{GM}{R^3} = \omega^2[/tex]

[tex]\omega = \sqrt{ \frac{GM}{R^3}}[/tex]

[tex]\frac{2\pi}{T} = \sqrt{ \frac{GM}{R^3}}[/tex]

[tex]T = 2\pi \sqrt {\frac{R^3}{GM}}[/tex]

[tex]T = 2 \pi \sqrt {\frac{(8.05 \times 10^{10})^3}{6.67 \times 10^{-11} \times 2.75 \times 10^{29}}}[/tex]

[tex]T \approx 3.35 \times 10^7 \texttt{ seconds}[/tex]

[tex]T \approx 388 \texttt{ days}[/tex]

[tex]\texttt{ }[/tex]

Learn more

  • Impacts of Gravity : https://brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454
  • The Acceleration Due To Gravity : https://brainly.com/question/4189441

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

[tex]\texttt{ }[/tex]

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant

Ver imagen johanrusli