Answer:
[tex]8,101\ bears[/tex]
Step-by-step explanation:
we know that
In this problem we have a exponential function of the form
[tex]y=a(b)^{x}[/tex]
where
x ----> is the number of years since 2009
y ----> is the population of bears
a ----> is the initial value
b ---> is the base
step 1
Find the value of a
For x=0 (year 2009)
y=1,570 bears
substitute
[tex]1.570=a(b)^{0}[/tex]
[tex]a=1.570\ bears[/tex]
so
[tex]y=1.570(b)^{x}[/tex]
step 2
Find the value of b
For x=1 (year 2010)
y=1,884 bears
substitute
[tex]1,884=1.570(b)^{1}[/tex]
[tex]b=1,884/1.570[/tex]
[tex]b=1.2[/tex]
The exponential function is equal to
[tex]y=1.570(1.2)^{x}[/tex]
step 3
How many bears will there be in 2018?
2018-2009=9 years
so
For x=9 years
substitute in the equation
[tex]y=1.570(1.2)^{9}[/tex]
[tex]y=8,101\ bears[/tex]