Drag the tiles to the correct boxes to complete the pairs.
Using the properties of integer exponents, match each expression with the correct equivalent expression.

Drag the tiles to the correct boxes to complete the pairs Using the properties of integer exponents match each expression with the correct equivalent expression class=

Respuesta :

Answer:

1. [tex](-2^2)^{-6}[/tex] ÷ [tex](2^{-5})^{-4} \implies 2^{-32}[/tex]

2. [tex]2^4 . (2^2)^{-2} \implies 1[/tex]

3. [tex](-2^{-4}).(2^2)^0 \implies -2^8[/tex]

4. [tex](2^2).(2^3)^{-3} \implies 2^{-5}[/tex]

Step-by-step explanation:

1. [tex](-2^2)^{-6}[/tex] ÷ [tex](2^{-5})^{-4}[/tex] :

[tex] = \frac{ ( - 2 ^ 2 ) ^ { - 6 } } { ( 2 ^ { - 5 } ) ^ { - 4 } } = \frac{2^{-12}}{2^{20}} = 2^{-12-20}=2^{-32}[/tex]

2. [tex] 2 ^ 4 . ( 2 ^ 2 ) ^ { - 2 } [/tex] :

[tex]= 2^4 \times \frac{1}{2^4} = 1[/tex]

3. [tex](-2^{-4}).(2^2)^0[/tex] :

[tex]= (-2^4)^2 \times 1 = -2^8[/tex]

4. [tex](2^2).(2^3)^{-3}[/tex] :

[tex]= 2^4 \times \frac{1}{2^9} =\frac{1}{2^5} =2^{-5}[/tex]

Answer:

The answer is 1-2 2-4 3-4 and 4-3

Step-by-step explanation: