In the figure, two parallel lines are cut by two other parallel lines. The measure of one of the angles is labeled. Find the measures of the other angles and label them. Answers (137,52,128,38)

Answer:
The measure of the angles are
m∠1=128°
m∠2=52°
m∠3=52°
m∠4=128°
m∠5=128°
m∠6=128°
m∠7=52°
m∠8=52°
Step-by-step explanation:
see the attached figure with numbers to better understand the problem
step 1
Find the measure of angle 5
we know that
m∠5+52°=180° ----> by consecutive interior angles
m∠5=180°-52°=128°
step 2
Find the measure of angle 8
we know that
m∠8=52° ----> by vertical angles
step 3
Find the measure of angle 7
we know that
m∠7=m∠8 ----> by corresponding angles
we have
m∠8=52°
therefore
m∠7=52°
step 4
Find the measure of angle 6
we know that
m∠6+m∠7=180° ----> by supplementary angles
we have
m∠7=52°
therefore
m∠6+52°=180°
m∠6=180°-52°=128°
step 5
Find the measure of angle 3
we know that
m∠3+m∠6=180° ----> by consecutive interior angles
we have
m∠6=128°
m∠3=180°-128°=52°
step 6
Find the measure of angle 2
we know that
m∠2=m∠3 ----> by vertical angles
we have
m∠3=52°
therefore
m∠2=52°
step 7
Find the measure of angle 1
we know that
m∠1+m∠3=180° ----> by supplementary angles
we have
m∠3=52°
therefore
m∠1+52°=180°
m∠1=180°-52°=128°
step 8
Find the measure of angle 4
we know that
m∠4=m∠1 ----> by vertical angles
we have
m∠1=128°
therefore
m∠4=128°
Answer:
The measure of the angles are
m∠1=128°
m∠2=52°
m∠3=52°
m∠4=128°
m∠5=128°
m∠6=128°
m∠7=52°
m∠8=52°
Step-by-step explanation: