contestada

An electron moves with a constant horizontal velocity of 3.0 × 106 m/s and no initial vertical velocity as it enters a deflector inside a TV tube. The electron strikes the screen after traveling 11 cm horizontally and 34 cm vertically upward with no horizontal acceleration. What is the constant vertical acceleration provided by the deflector? (The effects of gravity can be ignored.)

Respuesta :

Answer:

a = 5.05 x 10¹⁴ m/s²

Explanation:

Consider the motion along the horizontal direction

[tex]v_{x}[/tex] = velocity along the horizontal direction = 3.0 x 10⁶ m/s

t = time of travel

X = horizontal distance traveled = 11 cm = 0.11 m

Time of travel can be given as

[tex]t = \frac{X}{v_{x}}[/tex]

inserting the values

t = 0.11/(3.0 x 10⁶)

t = 3.67 x 10⁻⁸ sec

Consider the motion along the vertical direction

Y = vertical distance traveled = 34 cm = 0.34 m

a = acceleration = ?

t = time of travel  = 3.67 x 10⁻⁸ sec

[tex]v_{y}[/tex] = initial velocity along the vertical direction = 0 m/s

Using the kinematics equation

Y = [tex]v_{y}[/tex] t + (0.5) a t²

0.34 = (0) (3.67 x 10⁻⁸) + (0.5) a (3.67 x 10⁻⁸)²

a = 5.05 x 10¹⁴ m/s²

The vertical acceleration provided by the deflector is 5.05 x 10¹⁴ m/s².

What is acceleration?

Acceleration can be defined as the change in speed or direction of the object or particle.

First, calculate the time for horizontal motion,

[tex]t = \dfrac d v_x[/tex]

Where,

[tex]d[/tex] - horizontal distance = 11 cm = 0.11 m

[tex]v_x[/tex] - horijontal velocity = 3.0 x 10⁶ m/s

So,

t =  3.67 x 10⁻⁸ sec

Now calculate for vertical acceleration,

[tex]Y = v^o\times t + (0.5) a t^2[/tex]

Where,

Y - verical distance = 34 cm = 0.34 m

v^o - initial vertical velocity = 0 m/s.

a - acceleration = ?

Put the values in the formula,

0.34 = (0) (3.67 x 10⁻⁸) + (0.5) a (3.67 x 10⁻⁸)²

a = 5.05 x 10¹⁴ m/s²

Therefore, the vertical acceleration provided by the deflector is 5.05 x 10¹⁴ m/s².

Learn more about vertical acceleration :

https://brainly.com/question/16912518