((Image Included))
If x = 27 inches, what is the perimeter of the figure above?
A. (108 + 54 + 54) inches
B. (54 + 108) inches
C. (364.5 + 729) inches
D. (27 + 54 + 81) inches

Image Included If x 27 inches what is the perimeter of the figure above A 108 54 54 inches B 54 108 inches C 3645 729 inches D 27 54 81 inches class=

Respuesta :

Answer:

=204.13 inches.

Step-by-step explanation:

Using the side x, we can use sine to find the hypotenuse of the triangle with the angle marked 30°.

Sin 30 =x/hypotenuse.

sin 30 = 27/hyp

hyp= 27/sin 30

=54 inches

We can also find the adjacent as follows.

Cos 30 = adjacent/ 54

Adjacent= 54 cos 30

=46.77 inches

Using the angles marked 45 we can find the hypotenuse of the isosceles triangle.

sin 45= x/hypotenuse

sin 45 =27/hypotenuse

hypotenuse = 27/sin 45

=38.18 inches

The hypotenuse of both the triangles making the isosceles triangle are 38.18 inches long.

Perimeter = 54+ 46.77+27+ 38.18+38.18

=204.13 inches.

Answer: 204.12 inches

Step-by-step explanation:

We can find the lengths of the unknown sides by applying these identities:

[tex]tan\alpha=\frac{opposite}{adjacent}\\\\sin\alpha=\frac{opposite}{hypotenuse}[/tex]

Observe the image attached. To find "a" we need to substitute the following values into [tex]tan\alpha=\frac{opposite}{adjacent}[/tex]:

[tex]\alpha=30\°\\opposite=x=27\\adjacent=a[/tex]

And solve for "a":

[tex]tan(30\°)=\frac{27}{a}\\\\a=\frac{27}{tan(30\°)}\\\\a=46.76\ inches[/tex]

To find "b" we need to substitute the following values into [tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex]:

[tex]\alpha=30\°\\opposite=x=27\\hypotenuse=b[/tex]

And solve for "b":

[tex]sin(30\°)=\frac{27}{b}\\\\b=\frac{27}{sin(30\°)}\\\\b=54 inches[/tex]

 To find "c" we need to substitute the following values into [tex]sin\theta=\frac{opposite}{hypotenuse}[/tex]:

[tex]\theta=45\°\\opposite=x=27\\hypotenuse=c[/tex]

And solve for "c":

[tex]sin(45\°)=\frac{27}{c}\\\\c=\frac{27}{sin(45\°)}\\\\c=38.18 inches[/tex]

Since the triangle on the left is Isosceles, then:

[tex]d=c= 38.18\ inches\\\\[/tex]

Therefore, the perimeter is:

[tex]P=(46.76+54+2(38.18)+27)\ inches=204.12\ inches[/tex]

Ver imagen luisejr77