A 39-kg girl is bouncing on a trampoline. During a certain interval after leaving the surface of the trampoline her kinetic energy decreases to 160 J from 490 J. How high does she rise during this interval? Neglect air resistance.

Respuesta :

Answer:

The distance is 0.86 m.

Explanation:

Given that,

Mass = 39 kg

Initial kinetic energy, [tex]K.E_{i} = 160\ J[/tex]

Final kinetic energy, [tex]K.E_{f} = 490\ J[/tex]

We need to calculate the work done

According to work energy theorem

[tex]W = \Delta K.E[/tex]

[tex]W=K.E_{f}-K.E_{i}[/tex]...(I)

Work done is the product of the force and displacement.

[tex]W = mgh[/tex]....(II)

From equation (I) and (II)

[tex]K.E_{f}-K.E_{i}=mgh[/tex]

[tex]490-160=39\times9.8\times h[/tex]

[tex]h = 0.86\ m[/tex]

Hence, The distance is 0.86 m.