Respuesta :
Answer:
[tex]\frac{5}{2}[/tex]
Step-by-step explanation:
recall for a line whose equation is
y = mx + b,
the slope of this line is m
the slope of a line that is perpendicular to this line is -[tex]\frac{1}{m}[/tex]
in this case,
m = -[tex]\frac{2}{5}[/tex]
hence -[tex]\frac{1}{m}[/tex]=[tex]\frac{5}{2}[/tex]
The slope of a line that is perpendicular to the line represented by the equation y = -2/5x + 4/5 is 5/2 .
What is the slope of a line perpendicular to a given line ?
The slope of a line perpendicular to a given line is equal to the negative reciprocal of the slope of the given line.
Let the given line is y = mx + c , where the slope of the line is m and the y-intercept is c .
The slope of the line perpendicular to this given line is equal to -1/m .
How to find the slope of the given line ?
Given equation of line is y = -2/5x + 4/5 .
The slope of the given line is -2/5 .
Thus, the slope of the line perpendicular to this given line is equal to
= -(-5/2) = 5/2 .
Therefore, the slope of a line that is perpendicular to the line represented by the equation y = -2/5x + 4/5 is 5/2 .
To learn more about slope of perpendicular line, refer -
https://brainly.com/question/1362601
#SPJ2