Answer:
The product of [tex](x^2+3x+1)(x^2+x+2)[/tex] is [tex]x^3+4x^3+6x^2+7x+2[/tex]
Step-by-step explanation:
We need to find the product of [tex](x^2+3x+1)(x^2+x+2)[/tex]
We need to multiply the first term with the second term.
Multiplying:
[tex](x^2+3x+1)(x^2+x+2)\\=x^2(x^2+x+2)+3x(x^2+x+2)+1(x^2+x+2)\\=x^4+x^3+2x^2+3x^3+3x^2+6x+x^2+x+2\\Adding\,\,like\,\,terms\,\,\\=x^4+x^3+3x^3+2x^2+3x^2+x^2+6x+x+2\\=x^3+4x^3+6x^2+7x+2\\[/tex]
So, the product of [tex](x^2+3x+1)(x^2+x+2)[/tex] is [tex]x^3+4x^3+6x^2+7x+2[/tex]