Respuesta :

Answer:

[tex]x=\frac{34z-r}{n}-17[/tex]

Step-by-step explanation:

Given

[tex]n(17+x)=34z-r[/tex]

We have to isolate x on one side of the equation

Dividing both sides by n

[tex]\frac{n(17+x)}{n} =\frac{34z}{n}-\frac{r}{n}[/tex]

Taking LCM on left side

[tex]17+x = \frac{34z-r}{n}[/tex]

Subtracting 17 from both sides

[tex]17+x-17 = \frac{34z-r}{n}-17[/tex]

So, the value of x will be:

[tex]x=\frac{34z-r}{n}-17[/tex] ..

Hello!

The answer is:

[tex]x=\frac{34z-r}{n}-17[/tex]

Why?

To solve for "x" , we just need to isolate it from the equation.

So, we are given the equation:

[tex]n(17+x)=34z-r[/tex]

Then, isolating we have:

[tex]n(17+x)=34z-r\\\\17+x=\frac{34z-r}{n}\\\\x=\frac{34z-r}{n}-17[/tex]

Hence, the answer is:

[tex]x=\frac{34z-r}{n}-17[/tex]

Have a nice day!