Answer: 90.5%
Step-by-step explanation:
Given: Mean : [tex]\mu = 1\text{ inch}[/tex]
Standard deviation : [tex]\sigma = 0.003\text{ inch}[/tex]
The formula to calculate z is given by :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x= 0.995
[tex]z=\dfrac{0.995-1}{0.003}=-1.66666666667\approx-1.67[/tex]
The P Value =[tex]P(z<-1.67)=0.0474597[/tex]
For x= 1.005
[tex]z=\dfrac{1.005-1}{0.003}=1.66666666667\approx1.67[/tex]
The P Value =[tex]P(z<1.67)= 0.9525403[/tex]
[tex]\text{Now, }P(0.995<X<1.005)=P(X<1.005)-P(X<0.995)\\\\=P(z<1.67)-P(z<-1.67)\\\\=0.9525403-0.0474597=0.9050806[/tex]
In percent ,
[tex]P(0.995<X<1.005)=0.9050806\times100=90.50806\%\approx90.5\%[/tex]