The moment of inertia for a 5500 kg solid disc is 12100 kg-m^2. Find the radius of the disc? (a) 2.111 m (b) 2.579 m (c) 1.679 m (d) 2.574 m (e) 2.098 m (f) 2.457 m

Respuesta :

Answer:

The radius of the disc is 2.098 m.

(e) is correct option.

Explanation:

Given that,

Moment of inertia I = 12100 kg-m²

Mass of disc m = 5500 kg

Moment of inertia :

The moment of inertia is equal to the product of the mass and square of the radius.

The moment of inertia of the disc is given by

[tex]I=\dfrac{mr^2}{2}[/tex]

Where, m = mass of disc

r = radius of the disc

Put the value into the formula

[tex]12100=\dfrac{5500\times r^2}{2}[/tex]

[tex]r=\sqrt{\dfrac{12100\times2}{5500}}[/tex]

[tex]r= 2.098\ m[/tex]

Hence, The radius of the disc is 2.098 m.