A race car goes around a level, circular track with a diameter of 1.00 km at a constant speed of 89 km/h. What is the car's centripetal acceleration in m/s^2?

Respuesta :

Answer:

The car's centripetal acceleration is 1.22 m/s².

Explanation:

Given that,

Diameter of circular track [tex]d= 1.00\ km=1000\ m[/tex]

Radius r = 500 m

Constant speed [tex]v = 89\ km/h = 89\times\dfrac{5}{18}=24.722\ m/s[/tex]

The centripetal acceleration is defined as,

[tex]a_{c} = \dfrac{v^2}{r}[/tex]

Where, v = tangential velocity

r = radius

Put the value into the formula

[tex]a_{c}=\dfrac{(24.722)^2}{500}[/tex]

[tex]a_{c}=1.22\ m/s^2[/tex]

Hence, The car's centripetal acceleration is 1.22 m/s².