Answer:
The speed of the satellite is 7809.52 m/s
Explanation:
It is given that,
Radius of Earth, [tex]r=6.38\times 10^6\ m[/tex]
Mass of earth, [tex]M=5.98\times 10^{24}\ kg[/tex]
A satellite moves in a circular orbit a distance of, [tex]d=1.6\times 10^5\ m[/tex] above Earth's surface.
We need to find the speed of the satellite. It is given by :
[tex]v=\sqrt{\dfrac{GM}{R}}[/tex]
R = r + d
[tex]R=(6.38\times 10^6\ m+1.6\times 10^5\ m)=6540000\ m[/tex]
So, [tex]v=\sqrt{\dfrac{6.67\times 10^{-11}\ Nm^2/kg^2\times 5.98\times 10^{24}\ kg}{6540000\ m}}[/tex]
v = 7809.52 m/s
So, the speed of the satellite is 7809.52 m/s. Hence, this is the required solution.