A gas mixture contains 1.20 g N2 and 0.77 g O2 in a 1.65-L container at 15 ∘C. Part A Calculate the mole fraction of N2. Express your answer using two significant figures. X1 X 1 = nothing Request Answer Part B Calculate the mole fraction of O2. Express your answer using two significant figures. X2 X 2 = nothing Request Answer Part C Calculate the partial pressure of N2. Express your answer using two significant figures. P1 P 1 = nothing atm Request Answer Part D Calculate the partial pressure of O2. Express your answer using two significant figures. P2 P 2 = nothing atm Request Answer Provide Feedback

Respuesta :

Explanation:

Moles of nitrogen gas = [tex]n_1=\frac{1.20 g}{28 g/mol}=0.0428 mol[/tex]

Moles of oxygen gas = [tex]n_2=\frac{0.77 g}{32 g/mol}=0.0240 mol[/tex]

Mole fraction of nitrogen gas=[tex]\chi_1=\frac{n_1}{n_1+n_2}[/tex]

[tex]\chi_1=\frac{0.0428 mol}{0.0428 mol+0.0240 mol}=0.6407\approx 0.64[/tex]

Mole fraction of oxygen gas=[tex]\chi_2=1-\chi_1=1-0.6407=0.3593\approx 0.36[/tex]

Total  umber of moles in container :

n =[tex]n_1+n_2[/tex]= 0.0428 mol + 0.0240 mol = 0.0668 mol

Volume of the container = V = 1.65 L

Temperature of the container = T = 15°C = 288.15 K

Total pressure in the container = P

Using an ideal gas equation:

[tex]PV=nRT[/tex]

[tex]P=\frac{0.0668 mol\times 0.0821 atm L/mol k\times 288.15 K}{1.65 L}[/tex]

P = 0.9577 atm

Partial pressure of nitrogen gas = [tex]p^{o}_1[/tex]

Partial pressure of nitrogen gas = [tex]P^{o}_2[/tex]

Partial pressure of nitrogen gas and oxygen gas can be calculated by using Dalton's law of partial pressure:

[tex]p^{o}_i=p_{total}\times \chi_i[/tex]

[tex]p^{o}_1=P\times \chi_1=0.6135 atm\approx 0.61 atm[/tex]

[tex]p^{o}_2=P\times \chi_2=0.3441 atm\approx 0.34 atm[/tex]