Terrence buys a new car for $20,000. The value of the car depreciates by 15% each year. If f(x) represents the value of the car after x years, which function represents the car’s value?

Respuesta :

Answer:

20000*(0.85)^x

Step-by-step explanation:

Answer:

The function f(x) representing the value of car after x years is given by

[tex]f(x)=\$ 20,000\times (1-\frac{15}{100})^{x}[/tex]

Step-by-step explanation:

Since value of car depreciates by 15% each year

Value of car after 1 year

[tex]f(1)=value of new car \times(1-\frac{15}{100})[/tex]

=>[tex]f(1)=\$ 20,000\times(1-\frac{15}{100})[/tex]

Value of car after 2 year

[tex]f(2)=\$ 20,000\times(1-\frac{15}{100})\times(1-\frac{15}{100})[/tex]

=>[tex]f(2)=\$ 20,000\times(1-\frac{15}{100})^{2}[/tex]

Value of car after 3 year

[tex]f(3)=\$ 20,000\times(1-\frac{15}{100})\times(1-\frac{15}{100})\times(1-\frac{15}{100})[/tex]

=>[tex]f(3)=\$ 20,000\times(1-\frac{15}{100})^{3}[/tex]

Similarly value of car after x years is

[tex]f(x)=\$ 20,000\times (1-\frac{15}{100})^{x}[/tex]