Respuesta :

ANSWER

[tex](9 {c}^{ - 9} )^{ - 3}=\frac{{c}^{ 27} }{729} [/tex]

EXPLANATION

The given expression is

[tex](9 {c}^{ - 9} )^{ - 3} [/tex]

Recall that:

[tex] ({a}^{m} )^{n} = {a}^{mn} [/tex]

We use the law of exponents to get

[tex](9 {c}^{ - 9} )^{ - 3} = 9^{ - 3} {c}^{ - 9 \times - 3} [/tex]

Let us multiply in the exponents to get:

[tex](9 {c}^{ - 9} )^{ - 3} = 9^{ - 3} {c}^{ 27} [/tex]

Recall again that:

[tex] {a}^{ - m} = \frac{1}{ {a}^{m} } [/tex]

This implies that:

[tex](9 {c}^{ - 9} )^{ - 3} = \frac{1}{ {9}^{ 3} } \times {c}^{ 27} [/tex]

We expand the power to get:

[tex](9 {c}^{ - 9} )^{ - 3} = \frac{1}{9 \times 9 \times 9} \times {c}^{ 27}[/tex]

[tex](9 {c}^{ - 9} )^{ - 3}=\frac{1}{729} \times {c}^{ 27} [/tex]

We multiply out to get:

[tex](9 {c}^{ - 9} )^{ - 3}=\frac{{c}^{ 27} }{729} [/tex]

Answer:

Step-by-step explanation: the answer is b