Respuesta :

Answer:

[tex]f^{-1}(x)=6(x+7)^{3}[/tex]

Step-by-step explanation:

we have

[tex]f(x)=\sqrt[3]{\frac{x}{6}}-7[/tex]

Let

[tex]y=f(x)\\ y=\sqrt[3]{\frac{x}{6}}-7[/tex]

Exchanges the variable x for y and y for x

[tex]x=\sqrt[3]{\frac{y}{6}}-7[/tex]

Isolate the variable y

[tex]x+7=\sqrt[3]{\frac{y}{6}}[/tex]

elevates to the cube both members

[tex](x+7)^{3}=\frac{y}{6} \\ \\y=6(x+7)^{3}[/tex]

Let

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=6(x+7)^{3}[/tex] ------> inverse function