Respuesta :

Answer:

150 feet of flowers would be planted along side C

[tex]a=5400[/tex]

Step-by-step explanation:

Use the pythagorean theorem to find the length of side C

[tex]a^2+b^2=c^2[/tex]

Input the corresponding numbers into the formula

[tex]90^2+120^2=c^2[/tex]

[tex]c^2=22500[/tex]

[tex]c = \sqrt{22500} \\ c=150[/tex]

150 feet of flowers would be planted along side C

To find the area multiply the base and height together, and divide the total by two

[tex]a = \frac{bh}{2}[/tex]

[tex]a = \frac{90 * 120}{2} \\ a=5400[/tex]

gmany

Answer:

a) c = 150 ft

b) A = 5400 ft²

Step-by-step explanation:

[tex]a)\ \text{Use the Pythagorean theorem:}\\\\leg^2+leg^2=hypotenuse^2\\\\\text{We have:}\ leg=90\ ft,\ leg=120\ ft,\ hypotenuse=c.\\\\\text{Substitute:}\\\\c^2=90^2+120^2\\\\c^2=8100+14400\\\\c^2=22500\to c=\sqrt{22500}\\\\c=150\ ft[/tex]

[tex]b)\ \text{The formula of an area of a right triangle:}\\\\A=\dfrac{ab}{2}\\\\a,\ b-legs\\\\\text{We have}\ a=90\ ft\ \text{and}\ b=120\ ft.\ \text{Substitute:}\\\\A=\dfrac{(90)(120)}{2}=(90)(60)=5400\ ft^2[/tex]