Respuesta :

Answer:

-33 or 33

Step-by-step explanation:

The seventh term of an AP is written as:

[tex]a + 6d[/tex]

The eleventh term of an AP is written as:

[tex]a + 10d[/tex]

If the 7th term is 11 times the 11th term, then;

[tex]a + 6d = 11(a + 10d)[/tex]

Expand to get:

[tex]a + 6d = 11a + 110d[/tex]

[tex]11a - a = 6d - 110d[/tex]

[tex]10a = - 104d[/tex]

[tex] \frac{a}{d} = - \frac{104}{10} [/tex]

[tex] \frac{a}{d} = - \frac{52}{5} [/tex]

We must have a=-52 and d=5

Or

a=52 and d=-5

For the first case, the 18th term is :

[tex] - 52 + 5 \times 17 = 33[/tex]

For the second case,

[tex]52 - 5 \times17 = - 33[/tex]