1
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
Match the expressions with their simplified versions.

1 Drag the tiles to the correct boxes to complete the pairs Not all tiles will be used Match the expressions with their simplified versions class=

Respuesta :

Answer:

[tex]4\sqrt{2}.\sqrt{2} = 8\\3\sqrt{7}-2\sqrt{7} =\sqrt{7}\\\frac{\sqrt{7}}{2\sqrt{7}} = \frac{1}{2}\\2\sqrt{5}.2\sqrt{5} = 20[/tex]

Step-by-step explanation:

[tex]4\sqrt{2}.\sqrt{2}\\=4 . (\sqrt{2})^2\\=4*2\\=8\\\\3\sqrt{7}-2\sqrt{7}\\As\ the\ square\ root\ is\ same\ in\ both\ terms\\= (3-2)\sqrt{7}\\=\sqrt{7}\\\\\frac{\sqrt{7}}{2\sqrt{7}} \\The\ square\ roots\ will\ be\ cancelled\\= \frac{1}{2}\\ \\2\sqrt{5}.2\sqrt{5}\\=(2*2)(\sqrt{5})^2\\=4*5\\=20[/tex]

Answer:

Below we present each expression with its simplest form.

[tex]4\sqrt{2} \sqrt{2}=4(2)=8[/tex]

[tex]3\sqrt{7} -2\sqrt{7}=(3-2)\sqrt{7} = \sqrt{7}[/tex]

[tex]\frac{\sqrt{7} }{2\sqrt{7} } =\frac{1}{2}[/tex]

[tex]2\sqrt{5} 2\sqrt{5}=4(5)=20[/tex]

So, the first expression matches with 8.

The second expression matches with the square root of seven.

The third expression matches with one-half.

The fourth expression matches with 20.