Respuesta :

Answer:

[tex]\cos \theta=-\frac{2\sqrt{5}}{5}[/tex]

Step-by-step explanation:

It was given that:

[tex]\tan(\theta)=-\frac{1}{2}[/tex]

and [tex]\frac{\pi}{2}\le \theta \le \pi[/tex].

We use the relation:

[tex]\sec^2 \theta=1+\tan^2\theta[/tex]

We substitute the value to get:

[tex]\sec^2 \theta=1+(\frac{1}{2})^2[/tex]

[tex]\sec^2 \theta=1+\frac{1}{4}[/tex]

[tex]\sec^2 \theta=\frac{5}{4}[/tex]

[tex]\sec \theta=\pm \frac{\sqrt{5}}{2}[/tex]

Reciprocate both sides to get

[tex]\cos \theta=\pm \frac{2}{\sqrt{5}}[/tex]

Rationalize the denominator:

[tex]\cos \theta=\pm \frac{2\sqrt{5}}{5}[/tex]

The given interval, [tex]\frac{\pi}{2}\le \theta \le \pi[/tex] is the same as the 2nd quadrant where the cosine ratio is negative.

[tex]\therefore \cos \theta=-\frac{2\sqrt{5}}{5}[/tex]