Find the rectangular coordinates of the point with the polar coordinates (3, 3 divided by 2 pi ). (1 point)

(0, 3)

(0, -3)

(-3, 0)

(3, 0)

Respuesta :

Answer:

The correct choice is (0,-3)

Step-by-step explanation:

To convert from polar coordinates to rectangular coordinates, we use the parametric equations:

[tex]x=r\cos \theta[/tex] and [tex]y=r\sin \theta[/tex]

The point given to us in polar coordinates is [tex](3,\frac{3}{2}\pi)[/tex].

where [tex]r=3,\theta=\frac{3\pi}{2}[/tex]

[tex]x=3\cos (\frac{3\pi}{2})[/tex] and [tex]y=3\sin( \frac{3\pi}{2})[/tex]

[tex]x=3(0)[/tex] and [tex]y=3(-1)[/tex]

[tex]x=0[/tex] and [tex]y=-3[/tex]

The correct choice is (0,-3)