Answer: 0.14 Liters
Explanation:
[tex]Q=I\times t[/tex]
where Q= quantity of electricity in coloumbs
I = current in amperes = 1.45 A
t= time in seconds = 13 min=[tex]13\times 60 =780s[/tex]
[tex]Q=1.45A\times 780s=1131C[/tex]
[tex]HNO_3\rightarrow H^++NO_3^-[/tex]
[tex]2H^++2e^-\rightarrow H_2[/tex]
[tex]96500\times 2=193000Coloumb[/tex] of electricity deposits 1 mole of [tex]H_2[/tex]
1131 C of electricity deposits =[tex]\frac{1}{193000}\times 1131=5.86\times 10^{-3}moles[/tex] of [tex]H_2[/tex]
According to the ideal gas equation:'
[tex]PV=nRT[/tex]
P = Pressure of the gas = 1.03 atm
V= Volume of the gas = ?
T= Temperature of the gas = 25°C = 298 K (0°C = 273 K)
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas= [tex]5.86\times 10^{-3}moles[/tex]
[tex]V=\frac{nRT}{P}=\frac{5.86\times 10^{-3}\times 0.0821\times 298}{1.03}=0.14L[/tex]
Thus the volume of hydrogen gas at [tex]25^0C[/tex] and 1.03 atm will be 0.14 Liters.