Answer:
415
Step-by-step explanation:
Confidence Level = 98%
Z-value for this confidence level = z = 2.326
Margin of error = E = 0.08
Mean = u = 6.6
Standard deviation = [tex]\sigma=0.7[/tex]
Required Sample Size = n = ?
The formula for margin of error is:
[tex]E=z\frac{\sigma}{\sqrt{n}}[/tex]
Re-arranging the equation for n, and using the given values we get:
[tex]n=(\frac{z\sigma}{E} )^{2}\\\\ n=(\frac{2.326 \times 0.7}{0.08} )\\\\ n=415[/tex]
Thus, the minimum sample size required to create the specified confidence interval is 415