Answer:
Part 1) The length of the diagonal of the outside square is 9.9 units
Part 2) The length of the diagonal of the inside square is 7.1 units
Step-by-step explanation:
step 1
Find the length of the outside square
Let
x -----> the length of the outside square
c ----> the length of the inside square
we know that
[tex]x=a+b=4+3=7\ units[/tex]
step 2
Find the length of the inside square
Applying the Pythagoras Theorem
[tex]c^{2}= a^{2}+b^{2}[/tex]
substitute
[tex]c^{2}= 4^{2}+3^{2}[/tex]
[tex]c^{2}=25[/tex]
[tex]c=5\ units[/tex]
step 3
Find the length of the diagonal of the outside square
To find the diagonal Apply the Pythagoras Theorem
Let
D -----> the length of the diagonal of the outside square
[tex]D^{2}= x^{2}+x^{2}[/tex]
[tex]D^{2}= 7^{2}+7^{2}[/tex]
[tex]D^{2}=98[/tex]
[tex]D=9.9\ units[/tex]
step 4
Find the length of the diagonal of the inside square
To find the diagonal Apply the Pythagoras Theorem
Let
d -----> the length of the diagonal of the inside square
[tex]d^{2}= c^{2}+c^{2}[/tex]
[tex]d^{2}= 5^{2}+5^{2}[/tex]
[tex]d^{2}=50[/tex]
[tex]d=7.1\ units[/tex]