Respuesta :

Answer:

D. [tex]\log_4(3\sqrt[3]{35})[/tex]

Step-by-step explanation:

The given logarithmic expression is:

[tex]\log_43+\frac{\log_45}{3} +\frac{\log_47}{3}[/tex]

Don't let the fractions scare you at all.

We can rewrite the expression in another form that makes the fractions a bit friendly.

Recall that: [tex]\boxed{\frac{x}{3}=\frac{1}{3}x}[/tex]

We apply this knowledge to get:

[tex]\log_43+\frac{1}{3}\log_45 +\frac{1}{3}\log_47[/tex]

We can now use the following property:

[tex]n \log_am=\log_am^n[/tex]

We apply this property to get:

[tex]\log_43+\log_45^{\frac{1}{3}} +\frac{1}{3}\log_47^{\frac{1}{3}}[/tex]

Recall again that:

[tex]\log_am+\log_an+\log_ap=\log_amnp[/tex]

[tex]\log_43\times 5^{\frac{1}{3}} \times7^{\frac{1}{3}}[/tex]

[tex]\log_43\times (5\times7)^{\frac{1}{3}}[/tex]

[tex]\log_43\times (35)^{\frac{1}{3}}[/tex]

[tex]\log_43\sqrt[3]{35}[/tex]

The correct choice is D.