Biologists stocked a lake with 160 fish and estimated the carrying capacity (the maximal population for the fish of that species in that lake) to be 4,000. The number of fish tripled in the first year. (a) Assuming that the size of the fish population satisfies the logistic equation, find an expression for the size of the population after t years. (b) How long will it take for the population to increase to 2000 (half of the carrying capacity)?

Respuesta :

Answer:

The equation to find the number of fish after t years where y is the number of fish is:

y(t) = 160×3^(t) ( t <= 2.93 assuming that the maximum number of fish is 4000 )

Therefore when y(t) = 2000 2000 = 160×3^(t)

3^(t) = 25/2 log 3 (3^(t)) = log 3 (25/2) t = 2.29 years.

Using the logistic equation, we have that:

a)

The equation is:

[tex]P(t) = \frac{4000}{1 + 24e^{-1.1856t}}[/tex]

b)

It will take 2.68 years for the population to increase to 2000.

The logistic equation is:

[tex]P(t) = \frac{K}{1 + Ae^{-kt}}[/tex]

With:

[tex]A = \frac{K - P(0)}{P(0)}[/tex]

The parameters are:

  • The carrying capacity K.
  • The decay rate k.
  • The initial population P(0).

In this problem:

  • Initial population of 160, thus [tex]P(0) = 160[/tex].
  • Carrying capacity of 4,000, thus [tex]K = 4000[/tex].

Then:

[tex]A = \frac{4000 - 160}{160} = 24[/tex]

Thus:

[tex]P(t) = \frac{4000}{1 + 24e^{-kt}}[/tex]

Item a:

Tripled during the first year, thus [tex]P(1) = 3P(0) = 3(160) = 480[/tex].

This is used to find k.

[tex]480 = \frac{4000}{1 + 24e^{-k}}[/tex]

[tex]480 + 11520e^{-k} = 4000[/tex]

[tex]e^{-k} = \frac{3520}{11520}[/tex]

[tex]\ln{e^{-k}} = \ln{\frac{3520}{11520}}[/tex]

[tex]k = -\ln{\frac{3520}{11520}}[/tex]

[tex]k = 1.1856[/tex]

Thus, the equation is:

[tex]P(t) = \frac{4000}{1 + 24e^{-1.1856t}}[/tex]

Item b:

This is t for which P(t) = 2000, thus:

[tex]P(t) = \frac{4000}{1 + 24e^{-1.1856t}}[/tex]

[tex]2000 = \frac{4000}{1 + 24e^{-1.1856t}}[/tex]

[tex]\frac{1}{1 + 24e^{-1.1856t}} = 0.5[/tex]

[tex]0.5 + 12e^{-1.1856t} = 1[/tex]

[tex]e^{-1.1856t} = \frac{1}{24}[/tex]

[tex]\ln{e^{-1.1856t}} = \ln{\frac{1}{24}}[/tex]

[tex]t = -\frac{\ln{\frac{1}{24}}}{1.1856t}[/tex]

[tex]t = 2.68[/tex]

It will take 2.68 years for the population to increase to 2000.

A similar problem is given at https://brainly.com/question/24215157