Respuesta :

Answer:

[tex]\theta \in \{0,\pi,\frac{7\pi}{6},\frac{11\pi}{6}\}[/tex]

Step-by-step explanation:

[tex]\sin(\theta)+1=\cos(2\theta)[/tex]

Applying double angle identity:

[tex]\cos(2\theta)=1-2\sin^2(\theta)[/tex]

Doing so would give:

[tex]\sin(\theta)+1=1-2\sin^2(\theta)[/tex]

We need to get everything to one side so we have 0 on one side.

Subtract 1 on both sides:

[tex]\sin(\theta)=-2\sin^2(\theta)[/tex]

Add [tex]2\sin^2(theta)[/tex] on both sides:

[tex]\sin(\theta)+2\sin^2(\theta)=0[/tex]

Let's factor the left-hand side.

The two terms on the left-hand side have a common factor of [tex]\sin(\theta)[/tex].

[tex]\sin(\theta)[1+2\sin(\theta)]=0[/tex].

This implies we have:

[tex]\sin(\theta)=0 \text{ or } 1+2\sin(\theta)=0[/tex].

We need to solve both equations.

You are asking they be solved in the interval [tex][0,2\pi)[/tex].

[tex]\sin(\theta)=0[/tex]

This means look at your unit circle and find when you have your y-coordinates is 0.

You this at 0 and [tex]\pi[/tex]. (I didn't include [tex]2\pi[/tex] because you don't have a equal sign at the endpoint of [tex]2\pi[/tex].

Now let's solve [tex]1+2\sin(\theta)=0[/tex]

Subtract 1 on both sides:

[tex]2\sin(\theta)=-1[/tex]

Divide both sides by 2:

[tex]\sin(\theta)=\frac{-1}{2}[/tex]

Now we are going to go and look for when the y-coordinates are -1/2.

This happens at [tex]\frac{7\pi}{6}[/tex] and [tex]\frac{11\pi}{6}[/tex].

The solution set given the restrictions is

[tex]\theta \in \{0,\pi,\frac{7\pi}{6},\frac{11\pi}{6}\}[/tex]