Calculate the ratio of the resistance of 12.0 m of aluminum wire 2.5 mm in diameter, to 30.0 m of copper wire 1.6 mm in diameter. The resistivity of copper is 1.68×10−8Ω⋅m and the resistivity of aluminum is 2.65×10−8Ω⋅m.

Respuesta :

Answer: 0.258

Explanation:

The resistance [tex]R[/tex] of a wire is calculated by the following formula:

[tex]R=\rho\frac{l}{s}[/tex]    (1)

Where:

[tex]\rho[/tex] is the resistivity of the material the wire is made of. For aluminium is [tex]\rho_{Al}=2.65(10)^{-8}m\Omega[/tex]  and for copper is [tex]\rho_{Cu}=1.68(10)^{-8}m\Omega[/tex]

[tex]l[/tex] is the length of the wire, which in the case of aluminium is [tex]l_{Al}=12m[/tex], and in the case of copper is [tex]l_{Cu}=30m[/tex]

[tex]s[/tex] is the transversal area of the wire. In this case is a circumference for both wires, so we will use the formula of the area of the circumference:

[tex]s=\pi{(\frac{d}{2})}^{2}[/tex]  (2) Where [tex]d[/tex]  is the diameter of the circumference.

For aluminium wire the diameter is  [tex]d_{Al}=2.5mm=0.0025m[/tex]  and for copper is [tex]d_{Cu}=1.6mm=0.0016m[/tex]

So, in this problem we have two transversal areas:

For aluminium:

[tex]s_{Al}=\pi{(\frac{d_{AL}}{2})}^{2}=\pi{(\frac{0.0025m}{2})}^{2}[/tex]

[tex]s_{Al}=0.000004908m^{2}[/tex]   (3)

For copper:

[tex]s_{Cu}=\pi{\frac{(d_{Cu}}{2})}^{2}=\pi{(\frac{0.0016m}{2})}^{2}[/tex]

[tex]s_{Cu}=0.00000201m^{2}[/tex]    (4)

Now we have to calculate the resistance for each wire:

Aluminium wire:

[tex]R_{Al}=2.65(10)^{-8}m\Omega\frac{12m}{0.000004908m^{2}}[/tex]     (5)

[tex]R_{Al}=0.0647\Omega[/tex]     (6)  Resistance of aluminium wire

Copper wire:

[tex]R_{Cu}=1.68(10)^{-8}m\Omega\frac{30m}{0.00000201m^{2}}[/tex]     (6)

[tex]R_{Cu}=0.250\Omega[/tex]     (7)  Resistance of copper wire

At this point we are able to calculate the  ratio of the resistance of both wires:

[tex]Ratio=\frac{R_{Al}}{R_{Cu}}[/tex]   (8)

[tex]\frac{R_{Al}}{R_{Cu}}=\frac{0.0647\Omega}{0.250\Omega}[/tex]   (9)

Finally:

[tex]\frac{R_{Al}}{R_{Cu}}=0.258[/tex]  This is the ratio